Experimentos

 Movimento Browniano, 1905


 Efeito Fotoelétrico, 1905

 Teoria Especial da Relatividade, 1905

 Teoria Geral da Relatividade, 1916

     O movimento browniano é o movimento aleatório de partículas macroscópicas num fluido como consequência dos choques das moléculas do fluido nas partículas.Também pode ser observado quando luz é incidida em lugares muito secos, onde macropartículas "flutuam" em movimentos aleatórios. (Vulgarmente confunde-se com poeira).O primeiro a observar esse movimento, o biólogo Robert Brown, achou se tratar de uma nova forma de vida, pois ainda não se tinha completa ciência da existência de moléculas, e as partículas pareciam descrever movimentos por vontade própria.O cientista que explicou corretamente esse movimento, propondo que a energia fosse constituída de moléculas, foi Albert Einstein, em 1905.Há um padrão escondido nesse movimento aleatório que o classifica como um movimento fractal, pois descreve um padrão dinâmico bem definido. Quem primeiro percebeu isso foi Benoît Mandelbrot, matemático polonês.Esse movimento está diretamente ligado com muitas reacções em nível celular, como a difusão, a formação de proteínas, a síntese de ATP e o transporte intracelular de moléculas.
Físicos atualmente estudam tal movimento em relação à Teoria do Caos.







O efeito fotoelétrico é a emissão de elétrons por um material, geralmente metálico, quando exposto a uma radiação eletromagnética (como a luz) de frequência suficientemente alta, que depende do material. Ele pode ser observado quando a luz incide numa placa de metal, literalmente arrancando elétrons da placa. Observado a primeira vez por Heinrich Hertz em 1887, o fenômeno é também conhecido por "efeito Hertz", não sendo porém este termo de uso comum.Os elétrons que giram à volta do núcleo são aí mantidos por forças de atração. Se a estes for fornecida energia suficiente, eles abandonarão as suas órbitas. O efeito fotoelétrico implica que, normalmente sobre metais, se faça incidir um feixe de radiação com energia superior à energia de remoção dos elétrons do metal, provocando a sua saída das órbitas: sem energia cinética (se a energia da radiação for igual à energia de remoção) ou com energia cinética, se a energia da radiação exceder a energia de remoção do elétrons.A grande dúvida que se tinha a respeito do efeito fotoelétrico era que quando se aumentava a intensidade da luz, ao contrário do esperado, a luz não arrancava os elétrons do metal com maior energia cinética. O que acontecia era que uma maior quantidade de elétrons era ejetado.Por exemplo, a luz vermelha de baixa frequência estimula os elétrons para fora de uma peça de metal. Na visão clássica, a luz é uma onda contínua cuja energia está espalhada sobre a onda. Todavia, quando a luz fica mais intensa, mais elétrons são ejetados, contradizendo, assim a visão da física clássica que sugere que os mesmos deveriam se mover mais rápido (energia cinética) do que as ondas.Quando a luz incidente é de cor azul, essa mudança resulta em elétrons muito mais rápidos. A razão é que a luz pode se comportar não apenas como ondas contínuas, mas também como feixes discretos de energia chamados de fótons. Um fóton azul, por exemplo, contém mais energia do que um fóton vermelho. Assim, o fóton azul age essencialmente como uma "bola de bilhar" com mais energia, desta forma transmitindo maior movimento a um elétron. Esta interpretação corpuscular da luz também explica por que a maior intensidade aumenta o número de elétrons ejetados - com mais fótons colidindo no metal, mais elétrons têm probabilidade de serem atingidos.A explicação satisfatória para esse efeito foi dada em 1905, por Albert Einstein, e em 1921 deu ao cientista alemão o prêmio Nobel de Física.



A Teoria Relatividade (abreviadamente, TRR), publicada pela primeira vez por Albert Einstein em 1905, descreve a física do movimento na ausência de campos gravitacionais. Antes, a maior parte dos físicos pensava que a mecânica clássica de Isaac Newton, baseada na chamada relatividade de Galileu (origem das equações matemáticas conhecidas como transformações de Galileu) descrevia os conceitos de velocidade e força para todos os observadores (ou sistemas de referência). No entanto, Hendrik Lorentz e outros, comprovaram que as equações de Maxwell, que governam o electromagnetismo, não se comportam de acordo com a transformação de Galileu quando o sistema de referência muda (por exemplo, quando se considera o mesmo problema físico a partir do ponto de vista de dois observadores com movimento uniforme um em relação ao outro).A noção de variação das leis da física no que diz respeito aos observadores é a que dá nome à teoria, à qual se apõe o qualificativo de especial ou restrita por cingir-se apenas aos sistemas em que não se têm em conta os campos gravitacionais. Uma generalização desta teoria é a Teoria Geral da Relatividade, publicada igualmente por Einstein em 1915, incluindo os ditos campos. A relatividade restrita também teve um impacto na filosofia, eliminando toda possibilidade de existência de um tempo e de durações absolutas no conjunto do universo (Newton) ou como dados a priori da nossa experiência (Kant). Depois de Henri Poincaré, a relatividade restrita obrigou os filósofos a reformular a questão do tempo.Em Física, a relatividade geral é a generalização da Teoria da gravitação de Newton, publicada em 1915 por Albert Einstein e cuja base matemática foi desenvolvida pelo cientista francês Henri Poincaré. A nova teoria leva em consideração as ideias descobertas na Relatividade restrita sobre o espaço e o tempo e propõe a generalização do princípio da relatividade do movimento de referenciais em movimento uniforme para a relatividade do movimento mesmo entre referenciais em movimento acelerado. Esta generalização tem implicações profundas no nosso conhecimento do espaço-tempo, levando, entre outras conclusões, à de que a matéria (energia) curva o espaço e o tempo à sua volta. Isto é, a gravitação é um efeito da geometria do espaço-tempo.Muitas previsões da relatividade geral diferem significativamente das da física clássica, especialmente no que respeita à passagem do tempo, a geometria do espaço, o movimento dos corpos em queda livre, e a propagação da luz. Exemplos de tais diferenças incluem dilatação gravitacional do tempo, o desvio gravitacional para o vermelho da luz, e o tempo de atraso gravitacional. Previsões da relatividade geral foram confirmadas em todas as observações e experimentos até o presente. Embora a relatividade geral não é única teoria relativística da gravidade, é a mais simples das teorias que são consistentes com dados experimentais. No entanto, há questões ainda sem resposta, sendo a mais fundamental delas explicar como a relatividade geral pode ser conciliada com as leis da física quântica para produzir uma teoria completa e auto-consistente da gravitação quântica.A teoria de Einstein tem importantes implicações astrofísicas. Ela aponta para a existência de buracos negros - regiões no espaço onde o espaço e o tempo são distorcidos de tal forma que nada, nem mesmo a luz, pode escapar - como um estado final para as estrelas maciças . Há evidências de que esses buracos negros estelares, bem como outras variedades maciças de buracos negros são responsáveis pela intensa radiação emitida por certos tipos de objetos astronômicos, tais como núcleos ativos de galáxias ou microquasares. O desvio da luz pela gravidade pode levar ao fenômeno de lente gravitacional, onde várias imagens do mesmo objeto astronômico distante são visíveis no céu. A relatividade geral também prevê a existência de ondas gravitacionais, que já foram medidas indiretamente; uma medida direta é o objetivo dos projetos, tais como o LIGO. Além disso, a relatividade geral é a base dos atuais modelos cosmológicos de um universo sempre em expansão.